题目

给你一个字符串 s ,考虑其所有 重复子串 :即,s 的连续子串,在 s 中出现 2 次或更多次。这些出现之间可能存在重叠。

返回 任意一个 可能具有最长长度的重复子串。如果 s 不含重复子串,那么答案为 "" 。

示例

1
2
输入:s = "banana"
输出:"ana"
1
2
输入:s = "abcd"
输出:""

解答

代码

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
class SuffixArray {
public:
    using size_type = unsigned;
    using pointer = size_type*;
    using const_pointer = const size_type*;
    const_pointer sa, rk, ht;

private:
    std::unique_ptr<size_type[]> data;

private:
    template<typename S>
    inline static bool substring_equal(const S& s, size_type p1, size_type p2, size_type len) {
        for (size_type i = 0;i < len;++i)
            if (s[p1 + i] != s[p2 + i])
                return false;
        return true;
    }

    template<typename S>
    inline static void induced_sort(
        const S& s,
        pointer sa,
        bool* type,
        pointer pos,
        pointer lbuk,
        pointer sbuk,
        size_type n,
        size_type m,
        size_type n0) {
        std::fill_n(sa, n, 0);
        lbuk[0] = 0;
        for (size_type i = 1;i < m;++i)
            lbuk[i] = sbuk[i - 1];
        for (size_type i = n0;i-- > 0;)
            sa[--sbuk[s[pos[i]]]] = pos[i];
        sbuk[m - 1] = n;
        for (size_type i = 1;i < m;++i)
            sbuk[i - 1] = lbuk[i];
        sa[lbuk[s[n - 1]]++] = n - 1;
        for (size_type i = 0;i < n;++i)
            if (sa[i] > 0 && !type[sa[i] - 1])
                sa[lbuk[s[sa[i] - 1]]++] = sa[i] - 1;
        lbuk[0] = 0;
        for (size_type i = 1;i < m;++i)
            lbuk[i] = sbuk[i - 1];
        for (size_type i = n;i-- > 0;)
            if (sa[i] > 0 && type[sa[i] - 1])
                sa[--sbuk[s[sa[i] - 1]]] = sa[i] - 1;
    }

    template<typename S>
    static void sais(
        const S& s,
        pointer sa,
        bool* type,
        pointer len,
        pointer pos,
        pointer lbuk,
        pointer sbuk,
        size_type n,
        size_type m) {
        type[n - 1] = false;
        for (size_type i = n - 1;i-- > 0;)
            type[i] = s[i] != s[i + 1] ? s[i] < s[i + 1] : type[i + 1];
        size_type n0 = 0;
        for (size_type i = 1;i < n;++i)
            if (!type[i - 1] && type[i])
                pos[n0++] = i;
        std::fill_n(len, n, 0);
        for (size_type p = n - 1, i = n0;i-- > 0;p = pos[i])
            len[pos[i]] = p - pos[i] + 1;
        std::fill_n(sbuk, m, 0);
        for (size_type i = 0;i < n;++i)
            ++sbuk[s[i]];
        for (size_type i = 1;i < m;++i)
            sbuk[i] += sbuk[i - 1];
        induced_sort(s, sa, type, pos, lbuk, sbuk, n, m, n0);
        sbuk[m - 1] = n;
        for (size_type i = 1;i < m;++i)
            sbuk[i - 1] = lbuk[i];
        size_type m0 = -1;
        size_type ppos = -1, plen = 0;
        for (size_type i = 0;i < n;++i) {
            if (len[sa[i]] == 0) continue;
            if (len[sa[i]] != plen || !substring_equal(s, sa[i], ppos, plen)) ++m0;
            plen = len[sa[i]];
            len[sa[i]] = m0;
            ppos = sa[i];
        }
        pointer s0 = sa;
        pointer sa0 = sa + n0;
        for (size_type i = 0;i < n0;++i)
            s0[i] = len[pos[i]];
        if (++m0 < n0)
            sais(s0, sa0, type + n, len, pos + n0, lbuk, lbuk + n0, n0, m0);
        else for (size_type i = 0;i < n0;++i)
            sa0[s0[i]] = i;
        for (size_type i = 0;i < n0;++i)
            pos[i + n0] = pos[sa0[i]];
        induced_sort(s, sa, type, pos + n0, lbuk, sbuk, n, m, n0);
    }

public:
    template<typename S>
    SuffixArray(const S& s, size_type n, size_type m)
        : data(std::make_unique<size_type[]>(3 * n)) {
        const auto type = std::make_unique<bool[]>(2 * n);
        const auto lbuk = std::make_unique<size_type[]>(std::max(n, m));
        const auto sbuk = std::make_unique<size_type[]>(m);
        pointer sa = data.get(), rk = sa + n, ht = rk + n;
        sais(s, sa, type.get(), rk, ht, lbuk.get(), sbuk.get(), n, m);
        for (size_type i = 0;i < n;++i)
            rk[sa[i]] = i;
        for (size_type k = 0, i = 0;i < n;++i) {
            if (rk[i] == 0) continue;
            if (k > 0) --k;
            for (size_type j = sa[rk[i] - 1], l = n - std::max(i, j);k < l;++k)
                if (s[i + k] != s[j + k]) break;
            ht[rk[i]] = k;
        }
        this->sa = sa;
        this->rk = rk;
        this->ht = ht;
    }

    inline size_type suffix(size_type p) const {
        return sa[p];
    }

    inline size_type rank(size_type p) const {
        return rk[p];
    }

    inline size_type height(size_type p) const {
        return ht[p];
    }
};

class Solution {
public:
    string longestDupSubstring(string s) {
        const int n = s.size();
        SuffixArray sa(s, n, 128);
        int len = 0, pos = -1;
        for (int i = 1;i < n;++i) {
            if (sa.ht[i] > len) {
                len = sa.ht[i];
                pos = sa.sa[i];
            }
        }
        return pos == -1 ? "" : s.substr(pos, len);
    }
};